Show simple item record

dc.contributor.advisorEspitia Castañeda, Fernando Isidrospa
dc.contributor.authorSalamanca Quintana, Juan Estevan
dc.coverage.temporal1900-1933spa
dc.date.accessioned2024-08-23T21:34:00Z
dc.date.available2024-08-23T21:34:00Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/20.500.12209/20077
dc.description.abstractEste trabajo presenta una recontextualización histórica meticulosa que subraya la imperiosa necesidad de una nueva vanguardia intelectual para abordar los desafíos intrínsecos de la teoría cuántica. En este marco, se realiza un análisis exhaustivo que traza las principales contribuciones que han sido fundamentales para el desarrollo de esta teoría. Asimismo, se examina el impacto significativo del surgimiento de la mecánica cuántica en las formulaciones teóricas propuestas por Paul Dirac. En 1928, Dirac, con una lucidez excepcional, formuló una ecuación que se consolidaría como un pilar esencial de la física moderna: la ecuación de Dirac. Su objetivo era ambicioso y claro: desarrollar una ecuación que describiera con precisión el comportamiento de los electrones, integrando la relatividad especial con la mecánica cuántica. Sin embargo, lo que verdaderamente elevó esta ecuación a la categoría de obra maestra fue la introducción del concepto de antipartículas. A pesar de los desafíos y del escepticismo que prevalecía en la comunidad científica, Dirac defendió con determinación su teoría, respaldándola con dos artículos fundamentales que confrontaron las críticas más rigurosas. Este estudio también ofrece una interpretación profunda de las soluciones de energía negativa propuestas por Dirac en su ecuación, explorando su significado físico y las implicaciones teóricas subyacentes.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcereponame:Repositorio Institucional de la Universidad Pedagógica Nacionalspa
dc.sourceinstname:Universidad Pedagógica Nacionalspa
dc.subjectRecontextualización históricaspa
dc.subjectAntipartículasspa
dc.subjectMecánica cuánticaspa
dc.subjectEcuación de Diracspa
dc.subjectHistoria de la físicaspa
dc.subjectEnergía negativaspa
dc.subjectRelatividadspa
dc.subjectInterpretaciónspa
dc.titleUna recontextualización histórica. Desde los orígenes de la mecánica cuántica hasta la idea de las antipartículas de Paul Dirac.spa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.publisher.programLicenciatura en Físicaspa
dc.subject.keywordsHistorical recontextualizationeng
dc.subject.keywordsAntiparticleseng
dc.subject.keywordsQuantum mechanicseng
dc.subject.keywordsDirac equationeng
dc.subject.keywordsHistory of physicseng
dc.subject.keywordsNegative energyeng
dc.subject.keywordsRelativityeng
dc.subject.keywordsInterpretationeng
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.referencesAnderson, C. D. (1932). The Apparent Existence of Easily Deflectable Positives. Science, 76(1967), 238-239. https://doi.org/10.1126/science.76.1967.238spa
dc.relation.referencesAndino, F., Recarte, M., & Spilsbury, M. (2019). La función Delta de Dirac. Revista de la Escuela de Física, 2(1), 55-61. https://doi.org/10.5377/ref.v2i1.8292spa
dc.relation.referencesAyala, M. (2017). LA ENSEÑANZA DE LA FÍSICA PARA LA FORMACIÓN DE PROFESORES DE FÍSICA. Tecné, Episteme y Didaxis TED/Tecné, Episteme y Didaxis/Revista de la Facultad de Ciencia y Tecnologia, 6. https://doi.org/10.17227/ted.num6-5663spa
dc.relation.referencesAyala, M. M. (2006). Los an·lisis histÛrico-crÌticos y la recontextualizaciÛn de saberes cientÌficos. Construyendo un nuevo espacio de posibilidades. https://periodicos.sbu.unicamp.br/ojs/index.php/proposic/article/view/8643653spa
dc.relation.referencesBaer, H., & Belyaev, A. (2003). Proceedings of the Dirac Centennial Symposium. World Scientific.spa
dc.relation.referencesBaer, H., Dirac, P. A. M., & Belyaev, A. (2003). Proceedings of the Dirac Centennial Symposium: Florida State University, Tallahassee, USA, 6-7 December 2002. World Scientific.spa
dc.relation.referencesBaggott, J. E. (2017). Mass: The Quest to Understand Matter from Greek Atoms to Quantum Fields. Oxford University Press.spa
dc.relation.referencesBaggott, J. E., & Baggott, J. (2011). The Quantum Story: A History in 40 Moments. Oxford University Press.spa
dc.relation.referencesBallentine, L. E. (1970). The statistical interpretation of quantum mechanics. Reviews Of Modern Physics, 42(4), 358-381. https://doi.org/10.1103/revmodphys.42.358spa
dc.relation.referencesBelloni, L. (1994). On Fermi’s route to Fermi-Dirac statistics. European Journal Of Physics, 15(3), 102-109. https://doi.org/10.1088/0143-0807/15/3/002spa
dc.relation.referencesBloch, F. (1976). Heisenberg and the early days of quantum mechanics. Physics Today, 29(12), 23-27. https://doi.org/10.1063/1.3024633spa
dc.relation.referencesBohr, N. (1961). Atomic Theory and the Description of Nature: I-.spa
dc.relation.referencesBohr, N. (1985). Foundations of Quantum Physics I (1926-1932).spa
dc.relation.referencesBolles, E. B. (2004). Einstein defiant: Genius Versus Genius in the Quantum Revolution. Joseph Henry Press.spa
dc.relation.referencesBorn, M. (1926). Zur Quantenmechanik der Sto�vorg�nge. European Physical Journal. A, Hadrons And Nuclei, 37(12), 863-867. https://doi.org/10.1007/bf01397477spa
dc.relation.referencesBorn, M. (1969). Physics in my generation: A Selection of Papers.spa
dc.relation.referencesBuchwald, J. Z., & Warwick, A. (2001). Histories of the Electron: The Birth of Microphysics. Mit Press.spa
dc.relation.referencesCarretero, J. A. C. (2013). Dirac, la antimateria: el reflejo oscuro de la materia.spa
dc.relation.referencesCarretero, J. A. C. (2014). Pauli, el Espín: los electrones bailan.spa
dc.relation.referencesCassidy, D. C. (1993). Uncertainty: The Life and Science of Werner Heisenberg. W. H. Freeman.spa
dc.relation.referencesCassidy, D. C. (2010). Beyond uncertainty: Heisenberg, Quantum Physics, and The Bomb. Bellevue Literary Press.spa
dc.relation.referencesCassini, A., & Levinas, L. (2005). La reinterpretación radical del experimento de Michelson-Morley por la relatividad especial. Scientiae Studia, 3(4). https://doi.org/10.1590/s1678-31662005000400002spa
dc.relation.referencesCrowther, J. G. (1881). Fifty Years with Science.spa
dc.relation.referencesDirac, P. A. M. (1927). The physical interpretation of the quantum dynamics. Proceedings Of The Royal Society Of London, 113(765), 621-641. https://doi.org/10.1098/rspa.1927.0012spa
dc.relation.referencesDirac, P. A. M. (1927). The physical interpretation of the quantum dynamics. Proceedings Of The Royal Society Of London, 113(765), 621-641. https://doi.org/10.1098/rspa.1927.0012spa
dc.relation.referencesDirac, P. A. M. (1928a). The quantum theory of the electron. Proceedings Of The Royal Society Of London, 117(778), 610-624. https://doi.org/10.1098/rspa.1928.0023spa
dc.relation.referencesDirac, P. A. M. (1928b). The quantum theory of the Electron. Part II. Proceedings Of The Royal Society Of London. Series A, Containing Papers Of A Mathematical And Physical Character, 118(779), 351-361. https://doi.org/10.1098/rspa.1928.0056spa
dc.relation.referencesDirac, P. A. M. (1930a). A theory of electrons and protons. Proceedings Of The Royal Society Of London. Series A, Containing Papers Of A Mathematical And Physical Character, 126(801), 360-365. https://doi.org/10.1098/rspa.1930.0013spa
dc.relation.referencesDirac, P. A. M. (1930b). On the Annihilation of Electrons and Protons. Mathematical Proceedings Of The Cambridge Philosophical Society, 26(3), 361-375. https://doi.org/10.1017/s0305004100016091spa
dc.relation.referencesDirac, P. A. M. (1931). Quantised singularities in the electromagnetic field,. Proceedings Of The Royal Society Of London. Series A, Containing Papers Of A Mathematical And Physical Character, 133(821), 60-72. https://doi.org/10.1098/rspa.1931.0130spa
dc.relation.referencesDirac, P. A. M. (1933). Theory of electrons and positrons. https://docplayer.net/21140931-Theory-of-electrons-and-positrons.htmlspa
dc.relation.referencesDirac, P. A. M. (1978). Directions in Physics: Lectures Delivered During a Visit to Australia and New Zealand August/September 1975. John Wiley & Sons.spa
dc.relation.referencesDirac, P. A. M., Tamm, I. J., & Kozhevnikov, A. B. (1993). Paul Dirac and Igor Tamm correspondence. Part 1. 1928 - 1933. http://inspirehep.net/record/361713spa
dc.relation.referencesDittrich, W. (2015). On the Pauli-Weisskopf anti-Dirac paper. The European Physical Journal. H, 40(2), 261-278. https://doi.org/10.1140/epjh/e2015-60006-1spa
dc.relation.referencesDuncan, A., & Janssen, M. (2007). On the verge of umdeutung in Minnesota: Van Vleck and the Correspondence Principle. Part one. Archive For History Of Exact Sciences, 61(6), 553-624. https://doi.org/10.1007/s00407-007-0010-xspa
dc.relation.referencesEinstein, A., Born, M., & Born, H. (1971). The Born-Einstein Letters: Correspondence Between Albert Einstein and Max and Hedwig Born from 1916-1955, with Commentaries by Max Born. MacMillan.spa
dc.relation.referencesEnz, C. P. (2010). No time to be brief: A Scientific Biography of Wolfgang Pauli.spa
dc.relation.referencesEnz, C. P. (2013). Wolfgang Pauli: Das Gewissen der Physik. Springer-Verlag.spa
dc.relation.referencesFarmelo, G. (2009). The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius. Faber & Faber.spa
dc.relation.referencesFarmelo, G. (2010). Did Dirac predict the positron? Contemporary Physics, 51(2), 97-101. https://doi.org/10.1080/00107510903217214spa
dc.relation.referencesFaus, J. N. (2017). El principio de incertidumbre de Heisenberg. RBA Libros.spa
dc.relation.referencesFeynman, R. P. (1949). The Theory of Positrons. Physical Review, 76(6), 749-759. https://doi.org/10.1103/physrev.76.749spa
dc.relation.referencesFeynman, R. P., & Weinberg, S. (1987). Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures. Cambridge University Press.spa
dc.relation.referencesFierz, M., & Weisskopf, V. F. (1960). Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli.spa
dc.relation.referencesForman, P. (1970). Alfred Landé and the Anomalous Zeeman Effect, 1919-1921. Hist Stud Phys Sci, 2, 153-261. https://doi.org/10.2307/27757307spa
dc.relation.referencesGalili, I. (2007). Thought experiments: determining their meaning. Science & Education, 18(1), 1-23. https://doi.org/10.1007/s11191-007-9124-4spa
dc.relation.referencesGangui, A. (2007). El universo de Einstein: 1905 - Annus mirabilis - 2005. arXiv (Cornell University). https://arxiv.org/abs/0705.4266v1spa
dc.relation.referencesGomberoff, A., & Edelstein, J. (2021). Antimateria, magia y poesía. DEBATE.spa
dc.relation.referencesGuerrero, C., & Antonio, J. (2007). Historia y epistemología de las ciencias : las aportaciones de Toulmin a la enseñanza de las ciencias. Investigación y Experiencias Didácticas. http://redined.mecd.gob.es/xmlui/handle/11162/22782spa
dc.relation.referencesHeilbron, J. L. (1983). The origins of the exclusion principle. Hist Stud Phys Sci, 13(2), 261-310. https://doi.org/10.2307/27757517spa
dc.relation.referencesHeisenberg, W. (1973). Development of Concepts in the History of Quantum Theory. En Springer eBooks (pp. 264-275). https://doi.org/10.1007/978-94-010-2602-4_11spa
dc.relation.referencesHeisenberg, W. (2004). Fundamental Physics — Heisenberg and Beyond: Werner Heisenberg Centennial Symposium «Developments in Modern Physics». Springer Science & Business Media.spa
dc.relation.referencesHeisenberg, W. (2013). The Physical Principles of the Quantum Theory. Courier Corporation.spa
dc.relation.referencesHendry, J. (1984). The Creation of Quantum Mechanics and the Bohr-Pauli Dialogue. Springer.spa
dc.relation.referencesHunt, B. J. (2005). JED Z. BUCHWALD and ANDREW WARWICK (eds.), Histories of the Electron: The Birth of Microphysics. Dibner Institute Studies in the History of Science and Technology. Cambridge, MA and London: MIT Press, 2001. Pp. xi+514. ISBN 0-262-02494-2. £37.95 (hardback). The British Journal For The History Of Science, 38(1), 117-118. https://doi.org/10.1017/s0007087404346686spa
dc.relation.referencesJackson, J. D. (2010). Llewellyn Hilleth Thomas: An appraisal of an under-appreciated polymath. Bulletin Of The American Physical Society, 2010. http://absimage.aps.org/image/APR10/MWS_APR10-2009-000051.pdfspa
dc.relation.referencesJammer, M. (1966). The conceptual development of quantum mechanics.spa
dc.relation.referencesJed Z. Buchwald;, Andrew Warwick (Editors). Histories of the Electron: The Birth of Microphysics. XI + 514 pp., Figs, Index. Cambridge, Mass.: MIT Press, 2001. $24.95, £16.95 (paper); $62, £42.95 (cloth). (2002). Isis, 93(2), 368. https://doi.org/10.1086/345071spa
dc.relation.referencesKapitza, P. L., Strelkov, P. G., & Laurman, E. (1938). The Zeeman and Paschen-Back effects in strong magnetic fields. Proceedings Of The Royal Society Of London, 167(928), 1-15. https://doi.org/10.1098/rspa.1938.0114spa
dc.relation.referencesKlein, O. (1929). Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. European Physical Journal. A, Hadrons And Nuclei (Print), 53(3-4), 157-165. https://doi.org/10.1007/bf01339716spa
dc.relation.referencesKlein, O., & Nishina, Y. (1929). Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift Für Physik, 52(11-12), 853-868. https://doi.org/10.1007/bf01366453spa
dc.relation.referencesKojevnikov, A. (2002). Dirac’s Quantum Electrodynamics. En Birkhäuser Boston eBooks (pp. 229-259). https://doi.org/10.1007/978-1-4612-0131-1_8spa
dc.relation.referencesKojevnikov, A. (2020). The Copenhagen Network: The Birth of Quantum Mechanics from a Postdoctoral Perspective. Springer Nature.spa
dc.relation.referencesKragh, H. (1979). Niels Bohr’s Second Atomic Theory.spa
dc.relation.referencesKragh, H. (1981). The genesis of dirac’s relativistic theory of electrons. Archive For History Of Exact Sciences, 24(1), 31-67. https://doi.org/10.1007/bf00327714spa
dc.relation.referencesKragh, H. (1984). Equation with the many fathers. The Klein–Gordon equation in 1926. American Journal Of Physics, 52(11), 1024-1033. https://doi.org/10.1119/1.13782spa
dc.relation.referencesKragh, H. (1985). The Fine Structure of hydrogen and the gross Structure of the Physics Community, 1916-26. Hist Stud Phys Sci, 15(2), 67-125. https://doi.org/10.2307/27757550spa
dc.relation.referencesKragh, H. (1990). Dirac: A Scientific Biography. Cambridge University Press.spa
dc.relation.referencesKragh, H. (2012). Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913-1925. OUP Oxford.spa
dc.relation.referencesKragh, H. (2016). Simply dirac. Simply Charly.spa
dc.relation.referencesKragh, H. (2020). Quantum Generations: A History of Physics in the Twentieth Century. Princeton University Press.spa
dc.relation.referencesKuhn, T. S. (1963, 7 mayo). P. A. M. Dirac - Session III. https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4575-3spa
dc.relation.referencesLa Teana, F. (2005). La nascita dello spin.spa
dc.relation.referencesLaserna, D. B. (2012). Schrödinger, las paradojas cuánticas: el universo está en la onda.spa
dc.relation.referencesLeone, M., & Robotti, N. (2008). P M S Blackett, G Occhialini and the invention of the counter-controlled cloud chamber (1931–32). European Journal Of Physics, 29(2), 177-189. https://doi.org/10.1088/0143-0807/29/2/001spa
dc.relation.referencesMehra, J. (1973). The Physicist’s Conception of Nature. Springer.spa
dc.relation.referencesMehra, J. (1987). The Historical Development of Quantum Theory. 5,1. Erwin Schrödinger and the Rise of Wave Mechanics. Pt. 1. - Schrödinger in Vienna and Zurich : 1887 - 1925.spa
dc.relation.referencesMehra, J., & Rechenberg, H. (1982). The Formulation of Matrix Mechanics and its modifications 1925–1926. Springer.spa
dc.relation.referencesMoore, W. J. (1994). A life of Erwin Schrödinger. Cambridge University Press.spa
dc.relation.referencesMoyer, D. F. (1981). Evaluations of Dirac’s electron, 1928–1932. American Journal Of Physics, 49(11), 1055-1062. https://doi.org/10.1119/1.12643spa
dc.relation.referencesNavarro, J., & Vives, J. N. (2013). Niels Bohr, El Átomo Cuántico: pasaporte cuántico a otro estado.spa
dc.relation.referencesOmnès, R. (2002). Quantum Philosophy: Understanding and Interpreting Contemporary Science. Princeton University Press.spa
dc.relation.referencesOmnès, R. (2020). Understanding quantum mechanics. Princeton University Press.spa
dc.relation.referencesOppenheimer, J. R. (1930). On the Theory of Electrons and Protons. Physical Review, 35(5), 562-563. https://doi.org/10.1103/physrev.35.562spa
dc.relation.referencesPais, A. (1982). Max Born’s Statistical Interpretation of Quantum Mechanics. Science, 218(4578), 1193-1198. https://doi.org/10.1126/science.218.4578.1193spa
dc.relation.referencesPais, A. (1986). PLAYING WITH EQUATIONS, THE DIRAC WAY. RU86-B-150, DOE-ER-40033B-106. https://inspirehep.net/literature/18127spa
dc.relation.referencesPais, A. (1991). Niels Bohr’s Times: In Physics, Philosophy, and Polity. Oxford University Press.spa
dc.relation.referencesPais, A. (2000). The genius of science: A Portrait Gallery of Twentieht-century Physicists.spa
dc.relation.referencesPais, A., Jacob, M., Olive, D. I., & Atiyah, M. F. (2005). Paul Dirac: The Man and His Work. Cambridge University Press.spa
dc.relation.referencesPashby, T. (2012). Dirac’s Prediction of the Positron: A Case Study for the Current Realism Debate. Perspectives On Science, 20(4), 440-475. https://doi.org/10.1162/posc_a_00081spa
dc.relation.referencesPauli, W. (1946). Remarks on the history of the exclusion principle. Science, 103(2669), 213-215. https://doi.org/10.1126/science.103.2669.213spa
dc.relation.referencesPauli, W. (1947). Exclusion principle and quantum mechanics: Lecture Given in Stockholm After the Award of the Nobel Prize of Physics 1945.spa
dc.relation.referencesPauli, W. (2013). Writings on Physics and philosophy. Springer Science & Business Media.spa
dc.relation.referencesRodriguez-Meza, M. A., & Cervantes-Cota, J. L. (2006). El efecto fotoeléctrico. ResearchGate. https://www.researchgate.net/publication/315538875_El_efecto_fotoelectricospa
dc.relation.referencesRon, J. M. S. (2001). Historia de la física cuántica.spa
dc.relation.referencesRosa, P. S. (2021). Louis de Broglie e as ondas de matéria. https://doi.org/10.47749/t/unicamp.2004.297902spa
dc.relation.referencesRovira, S. C. (2006). Un recorrido por la historia del libro de divulgación científica. Quark: Ciencia, Medicina, Comunicación y Cultura, 37, 58-64. https://dialnet.unirioja.es/servlet/articulo?codigo=2048384spa
dc.relation.referencesSchrödinger, E. (1987). Part 2 The Creation of Wave Mechanics; Early Response and Applications 1925–1926. Springer.spa
dc.relation.referencesSchuster, A. (1898). Potential Matter.—A holiday dream. Nature, 58(1503), 367. https://doi.org/10.1038/058367a0spa
dc.relation.referencesSommerfeld, A. (1930). Wave-mechanics.spa
dc.relation.referencesStraumann, N. (2009). Wolfgang Pauli and Modern Physics. Space Science Reviews, 148(1-4), 25-36. https://doi.org/10.1007/s11214-009-9486-9spa
dc.relation.referencesWeyl, H. (1929). Elektron und Gravitation. I. The European Physical Journal A, 56(5-6), 330-352. https://doi.org/10.1007/bf01339504spa
dc.relation.referencesWeyl, H. (1967). Gruppentheorie und Quantenmechanik.spa
dc.relation.referencesWinter, R. G. (1959). Klein Paradox for the Klein-Gordon Equation. American Journal Of Physics, 27(5), 355-358. https://doi.org/10.1119/1.1934851spa
dc.relation.referencesWolfgang Ernst Pauli, 1900-1958. (1960). Biographical Memoirs Of Fellows Of The Royal Society, 5, 174-192. https://doi.org/10.1098/rsbm.1960.0014spa
dc.relation.referencesWright, A. S. (2016). A beautiful sea: P. A. M. Dirac’s epistemology and ontology of the vacuum. Annals Of Science, 73(3), 225-256. https://doi.org/10.1080/00033790.2016.1157731spa
dc.publisher.facultyFacultad de Ciencia y Tecnologíaspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1feng
dc.description.degreenameLicenciado en Físicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.reponamereponame:Repositorio Institucional de la Universidad Pedagógica Nacionalspa
dc.identifier.repourlrepourl: http://repositorio.pedagogica.edu.co/
dc.title.translatedA historical recontextualization from the origins of quantum mechanics to Paul Dirac's idea of antiparticles.eng
dc.description.abstractenglishThis paper presents a meticulous historical recontextualization that underscores the pressing need for a new intellectual vanguard to address the inherent challenges of quantum theory. Within this framework, a comprehensive analysis is conducted, tracing the major contributions that have been fundamental to the development of this theory. Furthermore, the significant impact of the emergence of quantum mechanics on the theoretical formulations proposed by Paul Dirac is examined. In 1928, Dirac, with exceptional clarity, formulated an equation that would become a cornerstone of modern physics: the Dirac equation. His goal was ambitious and clear: to develop an equation that would accurately describe the behavior of electrons, integrating special relativity with quantum mechanics. However, what truly elevated this equation to the status of a masterpiece was the introduction of the concept of antiparticles. Despite the challenges and skepticism that prevailed within the scientific community, Dirac staunchly defended his theory, supporting it with two fundamental papers that confronted the most rigorous criticisms. This study also offers a deep interpretation of the negative energy solutions proposed by Dirac in his equation, exploring their physical meaning and underlying theoretical implications.eng
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.description.researchareaLínea de profundización II la enseñanza de la física y la relación física matemáticaspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/