dc.contributor.advisor | Espitia Castañeda, Fernando Isidro | spa |
dc.contributor.author | Salamanca Quintana, Juan Estevan | |
dc.coverage.temporal | 1900-1933 | spa |
dc.date.accessioned | 2024-08-23T21:34:00Z | |
dc.date.available | 2024-08-23T21:34:00Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12209/20077 | |
dc.description.abstract | Este trabajo presenta una recontextualización histórica meticulosa que subraya la imperiosa necesidad de una nueva vanguardia intelectual para abordar los desafíos intrínsecos de la teoría cuántica. En este marco, se realiza un análisis exhaustivo que traza las principales contribuciones que han sido fundamentales para el desarrollo de esta teoría. Asimismo, se examina el impacto significativo del surgimiento de la mecánica cuántica en las formulaciones teóricas propuestas por Paul Dirac.
En 1928, Dirac, con una lucidez excepcional, formuló una ecuación que se consolidaría como un pilar esencial de la física moderna: la ecuación de Dirac. Su objetivo era ambicioso y claro: desarrollar una ecuación que describiera con precisión el comportamiento de los electrones, integrando la relatividad especial con la mecánica cuántica. Sin embargo, lo que verdaderamente elevó esta ecuación a la categoría de obra maestra fue la introducción del concepto de antipartículas. A pesar de los desafíos y del escepticismo que prevalecía en la comunidad científica, Dirac defendió con determinación su teoría, respaldándola con dos artículos fundamentales que confrontaron las críticas más rigurosas.
Este estudio también ofrece una interpretación profunda de las soluciones de energía negativa propuestas por Dirac en su ecuación, explorando su significado físico y las implicaciones teóricas subyacentes. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Pedagógica Nacional | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | reponame:Repositorio Institucional de la Universidad Pedagógica Nacional | spa |
dc.source | instname:Universidad Pedagógica Nacional | spa |
dc.subject | Recontextualización histórica | spa |
dc.subject | Antipartículas | spa |
dc.subject | Mecánica cuántica | spa |
dc.subject | Ecuación de Dirac | spa |
dc.subject | Historia de la física | spa |
dc.subject | Energía negativa | spa |
dc.subject | Relatividad | spa |
dc.subject | Interpretación | spa |
dc.title | Una recontextualización histórica. Desde los orígenes de la mecánica cuántica hasta la idea de las antipartículas de Paul Dirac. | spa |
dc.type | info:eu-repo/semantics/bachelorThesis | spa |
dc.publisher.program | Licenciatura en Física | spa |
dc.subject.keywords | Historical recontextualization | eng |
dc.subject.keywords | Antiparticles | eng |
dc.subject.keywords | Quantum mechanics | eng |
dc.subject.keywords | Dirac equation | eng |
dc.subject.keywords | History of physics | eng |
dc.subject.keywords | Negative energy | eng |
dc.subject.keywords | Relativity | eng |
dc.subject.keywords | Interpretation | eng |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | |
dc.relation.references | Anderson, C. D. (1932). The Apparent Existence of Easily Deflectable Positives. Science, 76(1967), 238-239. https://doi.org/10.1126/science.76.1967.238 | spa |
dc.relation.references | Andino, F., Recarte, M., & Spilsbury, M. (2019). La función Delta de Dirac. Revista de la Escuela de Física, 2(1), 55-61. https://doi.org/10.5377/ref.v2i1.8292 | spa |
dc.relation.references | Ayala, M. (2017). LA ENSEÑANZA DE LA FÍSICA PARA LA FORMACIÓN DE PROFESORES DE FÍSICA. Tecné, Episteme y Didaxis TED/Tecné, Episteme y Didaxis/Revista de la Facultad de Ciencia y Tecnologia, 6. https://doi.org/10.17227/ted.num6-5663 | spa |
dc.relation.references | Ayala, M. M. (2006). Los an·lisis histÛrico-crÌticos y la recontextualizaciÛn de saberes cientÌficos. Construyendo un nuevo espacio de posibilidades. https://periodicos.sbu.unicamp.br/ojs/index.php/proposic/article/view/8643653 | spa |
dc.relation.references | Baer, H., & Belyaev, A. (2003). Proceedings of the Dirac Centennial Symposium. World Scientific. | spa |
dc.relation.references | Baer, H., Dirac, P. A. M., & Belyaev, A. (2003). Proceedings of the Dirac Centennial Symposium: Florida State University, Tallahassee, USA, 6-7 December 2002. World Scientific. | spa |
dc.relation.references | Baggott, J. E. (2017). Mass: The Quest to Understand Matter from Greek Atoms to Quantum Fields. Oxford University Press. | spa |
dc.relation.references | Baggott, J. E., & Baggott, J. (2011). The Quantum Story: A History in 40 Moments. Oxford University Press. | spa |
dc.relation.references | Ballentine, L. E. (1970). The statistical interpretation of quantum mechanics. Reviews Of Modern Physics, 42(4), 358-381. https://doi.org/10.1103/revmodphys.42.358 | spa |
dc.relation.references | Belloni, L. (1994). On Fermi’s route to Fermi-Dirac statistics. European Journal Of Physics, 15(3), 102-109. https://doi.org/10.1088/0143-0807/15/3/002 | spa |
dc.relation.references | Bloch, F. (1976). Heisenberg and the early days of quantum mechanics. Physics Today, 29(12), 23-27. https://doi.org/10.1063/1.3024633 | spa |
dc.relation.references | Bohr, N. (1961). Atomic Theory and the Description of Nature: I-. | spa |
dc.relation.references | Bohr, N. (1985). Foundations of Quantum Physics I (1926-1932). | spa |
dc.relation.references | Bolles, E. B. (2004). Einstein defiant: Genius Versus Genius in the Quantum Revolution. Joseph Henry Press. | spa |
dc.relation.references | Born, M. (1926). Zur Quantenmechanik der Sto�vorg�nge. European Physical Journal. A, Hadrons And Nuclei, 37(12), 863-867. https://doi.org/10.1007/bf01397477 | spa |
dc.relation.references | Born, M. (1969). Physics in my generation: A Selection of Papers. | spa |
dc.relation.references | Buchwald, J. Z., & Warwick, A. (2001). Histories of the Electron: The Birth of Microphysics. Mit Press. | spa |
dc.relation.references | Carretero, J. A. C. (2013). Dirac, la antimateria: el reflejo oscuro de la materia. | spa |
dc.relation.references | Carretero, J. A. C. (2014). Pauli, el Espín: los electrones bailan. | spa |
dc.relation.references | Cassidy, D. C. (1993). Uncertainty: The Life and Science of Werner Heisenberg. W. H. Freeman. | spa |
dc.relation.references | Cassidy, D. C. (2010). Beyond uncertainty: Heisenberg, Quantum Physics, and The Bomb. Bellevue Literary Press. | spa |
dc.relation.references | Cassini, A., & Levinas, L. (2005). La reinterpretación radical del experimento de Michelson-Morley por la relatividad especial. Scientiae Studia, 3(4). https://doi.org/10.1590/s1678-31662005000400002 | spa |
dc.relation.references | Crowther, J. G. (1881). Fifty Years with Science. | spa |
dc.relation.references | Dirac, P. A. M. (1927). The physical interpretation of the quantum dynamics. Proceedings Of The Royal Society Of London, 113(765), 621-641. https://doi.org/10.1098/rspa.1927.0012 | spa |
dc.relation.references | Dirac, P. A. M. (1927). The physical interpretation of the quantum dynamics. Proceedings Of The Royal Society Of London, 113(765), 621-641. https://doi.org/10.1098/rspa.1927.0012 | spa |
dc.relation.references | Dirac, P. A. M. (1928a). The quantum theory of the electron. Proceedings Of The Royal Society Of London, 117(778), 610-624. https://doi.org/10.1098/rspa.1928.0023 | spa |
dc.relation.references | Dirac, P. A. M. (1928b). The quantum theory of the Electron. Part II. Proceedings Of The Royal Society Of London. Series A, Containing Papers Of A Mathematical And Physical Character, 118(779), 351-361. https://doi.org/10.1098/rspa.1928.0056 | spa |
dc.relation.references | Dirac, P. A. M. (1930a). A theory of electrons and protons. Proceedings Of The Royal Society Of London. Series A, Containing Papers Of A Mathematical And Physical Character, 126(801), 360-365. https://doi.org/10.1098/rspa.1930.0013 | spa |
dc.relation.references | Dirac, P. A. M. (1930b). On the Annihilation of Electrons and Protons. Mathematical Proceedings Of The Cambridge Philosophical Society, 26(3), 361-375. https://doi.org/10.1017/s0305004100016091 | spa |
dc.relation.references | Dirac, P. A. M. (1931). Quantised singularities in the electromagnetic field,. Proceedings Of The Royal Society Of London. Series A, Containing Papers Of A Mathematical And Physical Character, 133(821), 60-72. https://doi.org/10.1098/rspa.1931.0130 | spa |
dc.relation.references | Dirac, P. A. M. (1933). Theory of electrons and positrons. https://docplayer.net/21140931-Theory-of-electrons-and-positrons.html | spa |
dc.relation.references | Dirac, P. A. M. (1978). Directions in Physics: Lectures Delivered During a Visit to Australia and New Zealand August/September 1975. John Wiley & Sons. | spa |
dc.relation.references | Dirac, P. A. M., Tamm, I. J., & Kozhevnikov, A. B. (1993). Paul Dirac and Igor Tamm correspondence. Part 1. 1928 - 1933. http://inspirehep.net/record/361713 | spa |
dc.relation.references | Dittrich, W. (2015). On the Pauli-Weisskopf anti-Dirac paper. The European Physical Journal. H, 40(2), 261-278. https://doi.org/10.1140/epjh/e2015-60006-1 | spa |
dc.relation.references | Duncan, A., & Janssen, M. (2007). On the verge of umdeutung in Minnesota: Van Vleck and the Correspondence Principle. Part one. Archive For History Of Exact Sciences, 61(6), 553-624. https://doi.org/10.1007/s00407-007-0010-x | spa |
dc.relation.references | Einstein, A., Born, M., & Born, H. (1971). The Born-Einstein Letters: Correspondence Between Albert Einstein and Max and Hedwig Born from 1916-1955, with Commentaries by Max Born. MacMillan. | spa |
dc.relation.references | Enz, C. P. (2010). No time to be brief: A Scientific Biography of Wolfgang Pauli. | spa |
dc.relation.references | Enz, C. P. (2013). Wolfgang Pauli: Das Gewissen der Physik. Springer-Verlag. | spa |
dc.relation.references | Farmelo, G. (2009). The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius. Faber & Faber. | spa |
dc.relation.references | Farmelo, G. (2010). Did Dirac predict the positron? Contemporary Physics, 51(2), 97-101. https://doi.org/10.1080/00107510903217214 | spa |
dc.relation.references | Faus, J. N. (2017). El principio de incertidumbre de Heisenberg. RBA Libros. | spa |
dc.relation.references | Feynman, R. P. (1949). The Theory of Positrons. Physical Review, 76(6), 749-759. https://doi.org/10.1103/physrev.76.749 | spa |
dc.relation.references | Feynman, R. P., & Weinberg, S. (1987). Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures. Cambridge University Press. | spa |
dc.relation.references | Fierz, M., & Weisskopf, V. F. (1960). Theoretical Physics in the Twentieth Century: A Memorial Volume to Wolfgang Pauli. | spa |
dc.relation.references | Forman, P. (1970). Alfred Landé and the Anomalous Zeeman Effect, 1919-1921. Hist Stud Phys Sci, 2, 153-261. https://doi.org/10.2307/27757307 | spa |
dc.relation.references | Galili, I. (2007). Thought experiments: determining their meaning. Science & Education, 18(1), 1-23. https://doi.org/10.1007/s11191-007-9124-4 | spa |
dc.relation.references | Gangui, A. (2007). El universo de Einstein: 1905 - Annus mirabilis - 2005. arXiv (Cornell University). https://arxiv.org/abs/0705.4266v1 | spa |
dc.relation.references | Gomberoff, A., & Edelstein, J. (2021). Antimateria, magia y poesía. DEBATE. | spa |
dc.relation.references | Guerrero, C., & Antonio, J. (2007). Historia y epistemología de las ciencias : las aportaciones de Toulmin a la enseñanza de las ciencias. Investigación y Experiencias Didácticas. http://redined.mecd.gob.es/xmlui/handle/11162/22782 | spa |
dc.relation.references | Heilbron, J. L. (1983). The origins of the exclusion principle. Hist Stud Phys Sci, 13(2), 261-310. https://doi.org/10.2307/27757517 | spa |
dc.relation.references | Heisenberg, W. (1973). Development of Concepts in the History of Quantum Theory. En Springer eBooks (pp. 264-275). https://doi.org/10.1007/978-94-010-2602-4_11 | spa |
dc.relation.references | Heisenberg, W. (2004). Fundamental Physics — Heisenberg and Beyond: Werner Heisenberg Centennial Symposium «Developments in Modern Physics». Springer Science & Business Media. | spa |
dc.relation.references | Heisenberg, W. (2013). The Physical Principles of the Quantum Theory. Courier Corporation. | spa |
dc.relation.references | Hendry, J. (1984). The Creation of Quantum Mechanics and the Bohr-Pauli Dialogue. Springer. | spa |
dc.relation.references | Hunt, B. J. (2005). JED Z. BUCHWALD and ANDREW WARWICK (eds.), Histories of the Electron: The Birth of Microphysics. Dibner Institute Studies in the History of Science and Technology. Cambridge, MA and London: MIT Press, 2001. Pp. xi+514. ISBN 0-262-02494-2. £37.95 (hardback). The British Journal For The History Of Science, 38(1), 117-118. https://doi.org/10.1017/s0007087404346686 | spa |
dc.relation.references | Jackson, J. D. (2010). Llewellyn Hilleth Thomas: An appraisal of an under-appreciated polymath. Bulletin Of The American Physical Society, 2010. http://absimage.aps.org/image/APR10/MWS_APR10-2009-000051.pdf | spa |
dc.relation.references | Jammer, M. (1966). The conceptual development of quantum mechanics. | spa |
dc.relation.references | Jed Z. Buchwald;, Andrew Warwick (Editors). Histories of the Electron: The Birth of Microphysics. XI + 514 pp., Figs, Index. Cambridge, Mass.: MIT Press, 2001. $24.95, £16.95 (paper); $62, £42.95 (cloth). (2002). Isis, 93(2), 368. https://doi.org/10.1086/345071 | spa |
dc.relation.references | Kapitza, P. L., Strelkov, P. G., & Laurman, E. (1938). The Zeeman and Paschen-Back effects in strong magnetic fields. Proceedings Of The Royal Society Of London, 167(928), 1-15. https://doi.org/10.1098/rspa.1938.0114 | spa |
dc.relation.references | Klein, O. (1929). Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. European Physical Journal. A, Hadrons And Nuclei (Print), 53(3-4), 157-165. https://doi.org/10.1007/bf01339716 | spa |
dc.relation.references | Klein, O., & Nishina, Y. (1929). Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift Für Physik, 52(11-12), 853-868. https://doi.org/10.1007/bf01366453 | spa |
dc.relation.references | Kojevnikov, A. (2002). Dirac’s Quantum Electrodynamics. En Birkhäuser Boston eBooks (pp. 229-259). https://doi.org/10.1007/978-1-4612-0131-1_8 | spa |
dc.relation.references | Kojevnikov, A. (2020). The Copenhagen Network: The Birth of Quantum Mechanics from a Postdoctoral Perspective. Springer Nature. | spa |
dc.relation.references | Kragh, H. (1979). Niels Bohr’s Second Atomic Theory. | spa |
dc.relation.references | Kragh, H. (1981). The genesis of dirac’s relativistic theory of electrons. Archive For History Of Exact Sciences, 24(1), 31-67. https://doi.org/10.1007/bf00327714 | spa |
dc.relation.references | Kragh, H. (1984). Equation with the many fathers. The Klein–Gordon equation in 1926. American Journal Of Physics, 52(11), 1024-1033. https://doi.org/10.1119/1.13782 | spa |
dc.relation.references | Kragh, H. (1985). The Fine Structure of hydrogen and the gross Structure of the Physics Community, 1916-26. Hist Stud Phys Sci, 15(2), 67-125. https://doi.org/10.2307/27757550 | spa |
dc.relation.references | Kragh, H. (1990). Dirac: A Scientific Biography. Cambridge University Press. | spa |
dc.relation.references | Kragh, H. (2012). Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913-1925. OUP Oxford. | spa |
dc.relation.references | Kragh, H. (2016). Simply dirac. Simply Charly. | spa |
dc.relation.references | Kragh, H. (2020). Quantum Generations: A History of Physics in the Twentieth Century. Princeton University Press. | spa |
dc.relation.references | Kuhn, T. S. (1963, 7 mayo). P. A. M. Dirac - Session III. https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4575-3 | spa |
dc.relation.references | La Teana, F. (2005). La nascita dello spin. | spa |
dc.relation.references | Laserna, D. B. (2012). Schrödinger, las paradojas cuánticas: el universo está en la onda. | spa |
dc.relation.references | Leone, M., & Robotti, N. (2008). P M S Blackett, G Occhialini and the invention of the counter-controlled cloud chamber (1931–32). European Journal Of Physics, 29(2), 177-189. https://doi.org/10.1088/0143-0807/29/2/001 | spa |
dc.relation.references | Mehra, J. (1973). The Physicist’s Conception of Nature. Springer. | spa |
dc.relation.references | Mehra, J. (1987). The Historical Development of Quantum Theory. 5,1. Erwin Schrödinger and the Rise of Wave Mechanics. Pt. 1. - Schrödinger in Vienna and Zurich : 1887 - 1925. | spa |
dc.relation.references | Mehra, J., & Rechenberg, H. (1982). The Formulation of Matrix Mechanics and its modifications 1925–1926. Springer. | spa |
dc.relation.references | Moore, W. J. (1994). A life of Erwin Schrödinger. Cambridge University Press. | spa |
dc.relation.references | Moyer, D. F. (1981). Evaluations of Dirac’s electron, 1928–1932. American Journal Of Physics, 49(11), 1055-1062. https://doi.org/10.1119/1.12643 | spa |
dc.relation.references | Navarro, J., & Vives, J. N. (2013). Niels Bohr, El Átomo Cuántico: pasaporte cuántico a otro estado. | spa |
dc.relation.references | Omnès, R. (2002). Quantum Philosophy: Understanding and Interpreting Contemporary Science. Princeton University Press. | spa |
dc.relation.references | Omnès, R. (2020). Understanding quantum mechanics. Princeton University Press. | spa |
dc.relation.references | Oppenheimer, J. R. (1930). On the Theory of Electrons and Protons. Physical Review, 35(5), 562-563. https://doi.org/10.1103/physrev.35.562 | spa |
dc.relation.references | Pais, A. (1982). Max Born’s Statistical Interpretation of Quantum Mechanics. Science, 218(4578), 1193-1198. https://doi.org/10.1126/science.218.4578.1193 | spa |
dc.relation.references | Pais, A. (1986). PLAYING WITH EQUATIONS, THE DIRAC WAY. RU86-B-150, DOE-ER-40033B-106. https://inspirehep.net/literature/18127 | spa |
dc.relation.references | Pais, A. (1991). Niels Bohr’s Times: In Physics, Philosophy, and Polity. Oxford University Press. | spa |
dc.relation.references | Pais, A. (2000). The genius of science: A Portrait Gallery of Twentieht-century Physicists. | spa |
dc.relation.references | Pais, A., Jacob, M., Olive, D. I., & Atiyah, M. F. (2005). Paul Dirac: The Man and His Work. Cambridge University Press. | spa |
dc.relation.references | Pashby, T. (2012). Dirac’s Prediction of the Positron: A Case Study for the Current Realism Debate. Perspectives On Science, 20(4), 440-475. https://doi.org/10.1162/posc_a_00081 | spa |
dc.relation.references | Pauli, W. (1946). Remarks on the history of the exclusion principle. Science, 103(2669), 213-215. https://doi.org/10.1126/science.103.2669.213 | spa |
dc.relation.references | Pauli, W. (1947). Exclusion principle and quantum mechanics: Lecture Given in Stockholm After the Award of the Nobel Prize of Physics 1945. | spa |
dc.relation.references | Pauli, W. (2013). Writings on Physics and philosophy. Springer Science & Business Media. | spa |
dc.relation.references | Rodriguez-Meza, M. A., & Cervantes-Cota, J. L. (2006). El efecto fotoeléctrico. ResearchGate. https://www.researchgate.net/publication/315538875_El_efecto_fotoelectrico | spa |
dc.relation.references | Ron, J. M. S. (2001). Historia de la física cuántica. | spa |
dc.relation.references | Rosa, P. S. (2021). Louis de Broglie e as ondas de matéria. https://doi.org/10.47749/t/unicamp.2004.297902 | spa |
dc.relation.references | Rovira, S. C. (2006). Un recorrido por la historia del libro de divulgación científica. Quark: Ciencia, Medicina, Comunicación y Cultura, 37, 58-64. https://dialnet.unirioja.es/servlet/articulo?codigo=2048384 | spa |
dc.relation.references | Schrödinger, E. (1987). Part 2 The Creation of Wave Mechanics; Early Response and Applications 1925–1926. Springer. | spa |
dc.relation.references | Schuster, A. (1898). Potential Matter.—A holiday dream. Nature, 58(1503), 367. https://doi.org/10.1038/058367a0 | spa |
dc.relation.references | Sommerfeld, A. (1930). Wave-mechanics. | spa |
dc.relation.references | Straumann, N. (2009). Wolfgang Pauli and Modern Physics. Space Science Reviews, 148(1-4), 25-36. https://doi.org/10.1007/s11214-009-9486-9 | spa |
dc.relation.references | Weyl, H. (1929). Elektron und Gravitation. I. The European Physical Journal A, 56(5-6), 330-352. https://doi.org/10.1007/bf01339504 | spa |
dc.relation.references | Weyl, H. (1967). Gruppentheorie und Quantenmechanik. | spa |
dc.relation.references | Winter, R. G. (1959). Klein Paradox for the Klein-Gordon Equation. American Journal Of Physics, 27(5), 355-358. https://doi.org/10.1119/1.1934851 | spa |
dc.relation.references | Wolfgang Ernst Pauli, 1900-1958. (1960). Biographical Memoirs Of Fellows Of The Royal Society, 5, 174-192. https://doi.org/10.1098/rsbm.1960.0014 | spa |
dc.relation.references | Wright, A. S. (2016). A beautiful sea: P. A. M. Dirac’s epistemology and ontology of the vacuum. Annals Of Science, 73(3), 225-256. https://doi.org/10.1080/00033790.2016.1157731 | spa |
dc.publisher.faculty | Facultad de Ciencia y Tecnología | spa |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | eng |
dc.description.degreename | Licenciado en Física | spa |
dc.description.degreelevel | Pregrado | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | eng |
dc.identifier.instname | instname:Universidad Pedagógica Nacional | spa |
dc.identifier.reponame | reponame:Repositorio Institucional de la Universidad Pedagógica Nacional | spa |
dc.identifier.repourl | repourl: http://repositorio.pedagogica.edu.co/ | |
dc.title.translated | A historical recontextualization from the origins of quantum mechanics to Paul Dirac's idea of antiparticles. | eng |
dc.description.abstractenglish | This paper presents a meticulous historical recontextualization that underscores the pressing need for a new intellectual vanguard to address the inherent challenges of quantum theory. Within this framework, a comprehensive analysis is conducted, tracing the major contributions that have been fundamental to the development of this theory. Furthermore, the significant impact of the emergence of quantum mechanics on the theoretical formulations proposed by Paul Dirac is examined.
In 1928, Dirac, with exceptional clarity, formulated an equation that would become a cornerstone of modern physics: the Dirac equation. His goal was ambitious and clear: to develop an equation that would accurately describe the behavior of electrons, integrating special relativity with quantum mechanics. However, what truly elevated this equation to the status of a masterpiece was the introduction of the concept of antiparticles. Despite the challenges and skepticism that prevailed within the scientific community, Dirac staunchly defended his theory, supporting it with two fundamental papers that confronted the most rigorous criticisms.
This study also offers a deep interpretation of the negative energy solutions proposed by Dirac in his equation, exploring their physical meaning and underlying theoretical implications. | eng |
dc.rights.creativecommons | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.description.researcharea | Línea de profundización II la enseñanza de la física y la relación física matemática | spa |